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Chapter 2.  
FUNDAMENTALS OF ACOUSTICS - RESONANCE AND RESONATORS 
First part: RESONANCE 
 
INTRODUCTION 
In chapter 1,  I presented the fundamental properties of sound and how these properties can be 
measured. Fundamental hearing sensations were connected to measurable sound properties.   In 
this, the second chapter the concept of RESONANCE and of RESONATORS will be introduced.  
Resonators are fundamental building blocks of the sound generating systems such as the violin 
and the guitar. The chapter starts with introducing the resonance and how a resonance is 
described. Thereafter vibration sensitivity (technical term mobility) of resonances is discussed 
and finally how mechanical and acoustical measures of a resonator are related. 
 
2.1. RESONANCE 
A  RESONATOR  or a system of resonators gives one or several  RESONANCES. The blown 
tone of a bottle is the result of a resonance and the bottle is the resonator. A practical property to 
measure a resonator is its frequency response (vibration sensitivity, techn term mobility).  The 
response curve  gives a picture of each resonance,  i.e.  its FREQUENCY (the  peak frequency),  
its resonance LEVEL response (the peak height for the selected driving) and its BANDWIDTH 
(the peak width). These  properties  are  related  to  the  mechanical  properties of the resonator;  
the  MASS (weight),  STIFFNESS (spring) and FRICTION.  Often a resonator consists of a 
vibrating  area,  such as a violin top plate.  Then the distribution of  the vibrations  are  important.  
Positions of maximal  vibrations  are  called ANTINODES  and the positions of no vibrations are 
called NODES.  Furthermore the decay (the reverberance) of a resonance can be important.  The 
relations between these different measures  and properties will be explained in  this chapter. 
 
Let us first look at the guitar tone displayed in Fig.  1.9. The time history of the tone is smooth 
except the sharp wiggles soon after the attack.  The tone is not made up by a single partial but a 
spectrum of partials, the levels of which  slowly  change.  The  frequency separation between the  
partials  is constant and equals the frequency of the fundamental (the first partial). It is  the level 
of the partials that give the guitar tone its  character,  the timbre. 
 
But  why  do  we  obtain  a decaying spectrum  of  partials  at  these  very frequencies? Let  us  
cautiously move towards the answer by  looking  at  a vibrating string. 
 
 
AN EXAMPLE OF RESONANCE: THE VIBRATING STRING 
A large scale picture of the vibrating string can be presented by means of a long  rubber band  
with  one  end fixed to a wall.  The  rubber band  is  held stretched by a hand at its free end. If the 
free end is slowly moved up and down, the whole band moves up and down in time with the 
hand.  If the beat tempo,  the frequency,  is increased the string tends to swing out more between 
the fixed end and the hand end.  At a specific  frequency the band will swing up and down in a 
large bend  between wall and hand, but still only requires small hand movements. The vibrations 
at the bends are maximum. If the beat frequency is increased further   the bend will diminish and 
it is difficult to  make  the rubber band vibrate visibly.  With still further increase of the beat 
frequency  the  rubber band will  divide itself into two bends. At a specific beat frequency the 
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vibrations at the bends are maximum. With further increased beat frequency the bends diminish 
and thereafter  the rubber band will divide itself  into three bends, etc. 
 
Let  us  repeat  the  same experiment with better control and  use  a  small electrical  vibrator 
attached to a rubber band with its other end fixed to  a wall (a similar demonstration can be made 
using a string of a musical instrument).  An  electrical  tone generator (oscillator)  provides  the  
electrical driving  signal. The magnitude and the frequency of the driving signal are easy to 
adjust with high accuracy.  The vibrator  is  replacing the hand.  At low frequencies the  rubber 
band  again moves in phase with the motion of the  vibrator,  but  with increasing frequency it 
starts bending out more and more in the middle. At a specific frequency, the first resonant 
frequency the bend becomes maximum. The position of maximum motion is called an 
ANTINODE.  With further increase of the frequency the bend will first vanish and thereafter at 
the second resonant frequency, two maxima of motion will come out and the rubber band  does 
not move in the middle.  We have now two ANTINODES and in between a NODE. If we  
continue  to  increase the frequency the two antinodes vanish and  at  a higher  frequency  we will 
find three  bends,  antinodes,  and  between  the antinodes,  nodes. Further increase of  the 
frequency will show vibrations with four, five, six etc. antinodes with three, four,  five  etc. 
nodes.  We shall find that the maxima of vibrations are at at fixed  frequencies.  By  measuring  
the  frequencies we  will  find  that  the frequencies are 2,  3, 4, 5 times the frequency with 
maximum vibrations with only one bend.  
 
The experiment has shown that certain things happen at specific  frequencies (the  resonant  
frequencies) - the rubber band vibrations become maximum  at specific positions (antinodes) and 
are zero at other positions (nodes). 
 
THE ORIGIN OF A RESONANCE 
What  is behind these peculiarities and what has that to do with the  guitar tone?  It  is 
RESONANCES.  The vibrating rubber band and also  the  vibrating string have resonances. But 
before I explain what is happening to the guitar string,  let  me explain the origin of a resonance,  
how its properties  are described and are measured. 
 
The RESONANCE is an acoustical building brick of fundamental importance.  To describe a 
resonance we need to answer the following questions: 
At what frequency is a resonance, the resonant frequency? 
How limited is this resonance in frequency, the bandwidth? 
How easily are the vibrations to excite, the vibration sensitivity at resonant frequency? 
How are the vibrations distributed, the modes of vibration (or operating deflection shapes)? 
 
A  simple  resonator is a small ball attached to a  string  of  rubber bands, c.f.,  Fig. 2.1a. When 
the finger is slowly moved up and down the ball moves in  the  same  way up and down (in time,  
in phase with the  hand).  If  the beating  frequency of the finger is increased the up and down 
motion of  the ball increases more and more. At a certain beating frequency the ball motion 
becomes maximum. Further increase of the frequency will make the ball motion smaller and 
finally at high frequencies only the finger will move.   
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Figure 2.1.  A simple resonance: a) a simple resonator - a ball (C) attached to a  rubber  band (B) and hung on a 
finger (A),  and b) vibration sensitivity curve of  the resonance  - resonance  frequency (RF),  peak height (RL) and  
bandwidth  (B measured 3 dB below the peak maximum). 
 
The  size of the ball vibrations (upand down motion) follow the vibration sensitivity curve 
plotted in Fig.  2.1b. The curve shows low vibration sensitivity at low and high frequencies.  In 
between  there is  a  peak,  a resonance peak giving the resonant frequency (the  peak frequency), 
the peak  height giving the vibration sensitivity at the resonance and the peak  width giving the 
bandwidth. The bandwidth of resonances vary much from a fraction of a Hz for the string to 
tenths of Hz for body resonances. 
 
The  resonator  consists of a mass (weight) - the ball - and a spring  - the rubber band.  The  
turbulence in the air surrounding the ball tries  to  brake its motion and provides friction. If the 
stiffness of the rubber band is increased the resonant frequency is increased.  If the mass (weight) 
of the ball  is increased the resonant frequency is decreased.  If the friction (against the air) is 
increased by a thin plate under the ball, the width of the resonance peak is increased. 
 
It is difficult to move a finger up and down maintaining the same  beat size  and beat frequency.  
Therefore an arrangement as shown in Fig.  2.2 may be used.   A  loudspeaker  gives  a  strong  
tone.  By  turning  a  knob  on  a tone generator the tone frequency is changed without changing 
the strength of the tone. The plate with attached rubber band is hung over the loudspeaker and the 
strong loudspeaker tone sets the plate into vibration.  The frequency  is slowly  changed  and  at  
the same time the magnitude of the  plate  vibration  is measured. The vibration size is plotted for 
each frequency and thereby  the vibration sensitivity of the ball-rubber band resonator is obtained  
(in  the real world this very experiment may be hard to conduct though – a suitable combination 
loudspeaker, plate and rubberband may be hard to find). 
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Figure  2.2. Principle set-up for measuring the vibration sensitivity. 
 

 
 
Figure   2.3.  Specific vibration sensitivity and stiffness - bending with a force between  a thick and a thin plank 
(applies to low frequencies). 
 
 
2.2. VIBRATION SENSITIVITY 
VIBRATION SENSITIVITY ( techn term mobility) is a measure of how easily vibrations can be 
started and maintained. If  one  holds a swing,   and pulls and pushes it to and fro  with  the same 
force then the swing starts to swing,  i.e.,  it starts to vibrate. How much the  swing  vibrates  is  a 
measure of  the   vibration sensitivity.  More  mathematically expressed  the is the ratio between 
vibration  velocity  and  the driving  force.  Mathematical formulas describing the vibration 
sensitiivty (mobility) are given  in the  appendix  of this chapter.  At a specific push and pull  
frequency  the swing  vibration  become  maximum,  i.e.,  the swing  is  vibrating  at  its resonant 
frequency.  
 
The  SPECIFIC  VIBRATION SENSITIVITY (specific mobility) is a measure on how easily a 
resonator (a swing,  a string  or  a violin back plate) can be set into vibration, when its  resonant 
properties are fully eliminated. 
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Example  2.1. What is the specific vibration sensitivity of and how much does a plank bend, 
which is ten times stiffer compared to a second plank? The picture is drawn for 
static forces, but applies also to vibration forces below the resonant frequency of 
the system. Here only  stiffness is involved, which is only applicable  for  low 
frequencies and the static case.  The same force is applied in the two cases.  By 
using formulas (see appendix) one finds that  the stiffer  plank is bent 1/10 of the 
second one.  The difference in specific vibration sensitivity is squareroot of 1/10, 
which is approximately 1/3 and corresponds to -10 dB.  Rule of thumb - 10 times 
stiffer results in a 10 dB lower level, c.f., Fig. 2.3. The relation is also true for 
vibration forces at frequencies well below the resonant frequency of the system. 

 
Figure   2.4.  Specific  vibration sensitivity and mass (weight) - displacement by  a  force between   a  big  motorboat  
and  a  small  rubber boat  (applicable  at  high frequencies, c.f., example 2.2). 
 
Example  2.2. What is the specific vibration sensitivity and how much less does the ten times 

heavier motorboat move than the smaller rubberboat if pushed? The picture is 
drawn for a static force but applies to vibration forces above the resonant 
frequency of the system. A little calculation shows that the heavier boat  obtains  a 
motion of 1/10 of the smaller one. Furthermore the specific vibration sensitivity 
becomes the squareroot of 1/10, i.e.  1/3  corresponding to 10 dB lower specific 
vibration sensitivity for the heavy boat car compared to the small one. The relation 
is also true for vibration forces at frequencies well above the resonant frequency of 
the system 
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Fig 2.5 The specific vibration sensitivity, the  dashed line, can be low but resonance properties of the instrument 
body may increase the total vibration sensitivity, the full line,  to give large interferance with the string motion and 
cause a “wolf tone”.  
 
The results of examples 2.1 and 2.2 are "reasonable" - a stiff spring or a  heavy mass (weight) is 
more difficult to set into vibration,  and the specific mobilities are lower. Complications are 
added in the range of a resonant frequency. The resonant  properties are superimposed,  c.f.,  the 
formula predict larger vibrations close to the resonant frequency. 
 
The  specific vibration sensitivity also gives an average (geometric mean) measure of how two 
vibrating systems  may cooperate.  If  the  specific  vibration sensitivity is large (a string for 
instance)  in  one  of the systems and small in the  other  (the body of a musical instrument),  then  
the two systems will work fairly independently of each other, c.f. the strings on a violin or a 
guitar. If the specific vibration sensitivity with the superimposed  resonance properties (c.f. Fig 
2.5) are about the same of a string and of an instrument body,  then the two  systems will effect 
each other, c.f., the wolf tone of the cello. 

 
Figure  2.6 A two-resonator system as example on vibration sensitivity and specific vibration sensitivity. Nailing a 
small block of wood to a bending board by means of a small  hammer with bending handle and an axe as extra mass-
support. 
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In  common  life one meets these practical problems such as nailing in  weak boards,  c.f.,  Fig.  
2.6.  The  thin board is set into vibration,  it  will vibrate at its resonant frequency. The vibration 
sensitivity of the board can be  decreased  by  adding mass with an axe,  which  greatly  
simplifies  the nailing.  The  force from the hammer is transmitted by friction between  the nail 
and the block to the board.  The mass of the small hammer head together with the stiffness of the 
handle gives a second resonance. This resoance is much damped by  the holding hand.  In 
somewhat similar ways can the function of  musical instruments be modelled as seen by the eyes 
of the physicist,  although the musical  instruments  are much more complicated.  The string of  
the  guitar replaces  the small hammer,  the bridge replaces the block and nail,  and  the  body 
replaces the board. 
 
A resonance is determined by the spring and the mass. At a specific frequency, the resonant 
frequency, the spring effect and the mass effect are of the same size. They counteract and the 
vibration sensitivity becomes maximimum. The effects of very large friction is also calculated. 
 
 
2.3. THE MECHANICAL AND ACOUSTICAL MEASURES OF THE RESONATOR 
One  very  interesting  question is:  How much are the  acoustical  measures changed if one of the 
mechanical measures is changed?  The changes we shall study  correspond to doubling of the 
stiffness,  mass and  friction,  c.f., Fig. 2.7. 
 
In  the case shown in Fig 2.7a only the mass is changed (for simplicity  two rubber  bands  and  
two weights are used as standard).  If the  mass  is  doubled  (four  weights) the resonance 
frequency decreases  half  an  octave (from 500 to 350 Hz,  i.e. 1/1.4 times). If the mass is halved 
(one  weight) the resonance frequency is increased half an octave (from  500 to 700 Hz,  i.e.  1.4 
times).  The peak heights (the levels) are approximately the  same  and  the  levels of these curves 
are the same at low  frequencies  (100  Hz  for instance).  At high frequencies the level (the 
vibration sensitivity) is larger  for the smaller mass.  
 
If  only  the  stiffness of our resonator is  changed,  then  the  following happens,  see  Fig.  2.7b.  
For  doubled  stiffness (four  rubber bands)  the resonance  frequency increases half an octave 
and for half the stiffness  (  one rubber band)  the  resonance  frequency decreases half an  octave.  
For  high frequencies  the  level (the vibration sensitivity) is the same but for low frequencies  it  
is higher for the smaller stiffness.  The peak heights are little influenced by the stiffness changes. 
 
Thus we have found that the effect on the resonance frequency by a doubling of the mass is 
equivalent to halving the stiffness and vice versa.  There is, however, one large  difference.  The 
doubling of the mass decreases the vibration sensitivity at  high frequencies  only,  while halving 
of the stiffness increases the vibration sensitivity at low frequencies only. 
 
Finally if the friction is doubled and halved as indicated in  Fig.  2.7c  the  peak  height  is  
decreased  and  increased  by  6  dB, respectively. In addition the effect of very large friction, 
bandwidth 500 Hz being equal to the resonant frequency is calculated. For such large losses 
(large bandwidth) no clear resonance peak is obtained. 
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Suggested experiment:  Start with three similar bars,  use one as reference, add  and  take  away a 
small weight from the second. Add and  take  away  a stiffening  rib  from  the third.  Tap and 
listen - is the  tap  tone  pitch (frequency) changing as one should expect.  Further experiments 
can be  made by thinning one of the bars, c.f., chapter 5. 

 
 
 
 
Figure  2.7. Vibration sensitivity with different mechanical properties. 
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Figure   2.8.  Vibration sensitivity for a vibrating system consisting of a single resonance (upper frame) with the 
resonant frequency RF,  the height of the resonance peak  RL,  and  the bandwidth B,  and for a vibrating system  
consisting  of several  resonances (lower frame) where each resonance has it own  resonance frequency, height and 
bandwidth. 
 
 
ACOUSTICAL PROPERTIES OF A RESONANCE. MULTIRESONATOR SYSTEMS. 
The properties of a resonance can be described by its vibration sensitivity curve i.e.  a curve of 
the vibration sensitivity for every frequency.  Usually such a curve is called a resonance  curve  
or a frequency  response  curve,  c.f.,  Fig.  2.8a.  The frequency at the peak is the RESONANT 
FREQUENCY. The height of the peak is the PEAK LEVEL The width of the peak 3 dB below 
maximum is the BANDWIDTH  (often the ratio of the resonant frequency divided by the 
bandwidth  is given, the so called  Q-factor). The acoustical properties of a resonance are 
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described  by  the  three  measures  RESONANT  FREQUENCY,  PEAK  LEVEL  and 
BANDWIDTH (Q-factor). 
 
The mechanical properties of a resonator are: 
1.  STIFFNESS  such  as  the stiffness of a spring or the springiness  of  a rubber band. 
2. MASS such as the weight of a ball. 
3. FRICTION such as the air friction when the ball is moving. 
 
The   different   mechanical  properties  influence  the   resonance   curve differently  as has been 
shown in Fig.  2.7.  More mass (weight) gives lower resonance  frequency  and lower levels  at  
high  frequencies,  and higher stiffness a high resonance frequency and lower levels at low 
frequencies.  The  mass  and  the stiffness do not influence the bandwidth. The friction does 
however. Little friction gives a high level and narrow  bandwidth  and  a  high  friction gives a  
low  level  and  a  large bandwidth.   The  friction  influences  only  the  resonance  curve  in  the 
neighbourhood  of the resonance frequency.  To build up the vibrations at  a resonance  demands  
a  specific  time,   which  gives  a  specific  starting characteristic.  In the same way it takes some 
time for the resonance  vibrations to vanish, which gives an ending characteristic. Both the 
starting and the ending time are set by the bandwidth of the resonance peak. 
 
The  resonance  curve for a single resonator can be measured and looks as  in Fig. 2.8a, and gives 
a measure of the resonant frequency, the bandwidths and the level. The resonance curve for a 
multiple resonator system such as the guitar can look like the resonance curve 2.8b. Each peak 
corresponds to a resonance and has its own resonant frequency,  bandwidth, and level as each 
resonance is  made  up its own stiffness,  mass and friction.  In  general  all  three measures are 
different for the different resonances. 
 
 
 
 
2.4 SUMMARY: RESONANCE  
In  this  first part of this chapter the concept of resonance  has  been introduced.  The  mechanical  
properties of a resonance system such as  mass (weight),  stiffness  (springiness)  and friction 
have been related  to  the acoustical properties of the resonance system,  such as resonant 
frequency, bandwidth  and level.  The duration for starting and ending  characteristics (transients) 
is  determined by the bandwidth of the resonance.  Furthermore a method  to measure the 
acoustical properties of a resonance system has been sketched. 
 
2.5 KEY WORDS: 
Resonance (eigenmode),  resonant frequency, bandwidth and level, vibration sensitivity, starting  
time (start duration),   ending  time  (end duration),  mass  (weight),  stiffness (springiness), and 
friction.  
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CHAPTER 2.  
Second part: RESONATORS 
 
INTRODUCTION 
In this part properties of  resonators used in string instruments will be introduced. First simple 
resonators as the hole-volume (the Helmholtz) resonator and the string will be presented.  
Thereafter properties of complex resonators as the bar and the plate.  Finally a simple way to 
measure the properties of plate resonantors as well as further complications as shape and arching 
will be introduced. 
 
2.6. SIMPLE RESONATORS 
THE HOLE-VOLUME RESONATOR (RESONANT FREQUENCY) 
The  simplest resonator encountered in musical instruments is an enclosed air  volume with  a 
hole.  Often this resonance is called the  Helmholtz resonance  The  resonator is called a 
Helmholtz resonator.  The  air  volume works  as a spring (stiffness) and the mass (the weight) is 
the air plug  in the sound hole.  Except for the constructional difference it works as the ball-
rubber band resonator,  c.f.  Fig. 2.1. A large volume and a hole with small cross section gives an 
air tone of low frequency. 
 
A simple example of a hole-volume resonator is a bottle,  which is set  into vibration  by  blowing 
over the neck opening.  The air volume in the  bottle works as the spring and the air plug in the 
bottle neck is the mass, see Fig. 2.9.  When  one gently blows over the neck opening the air plug 
is set  into vibration  and  co-operates with the spring of the air volume in such  a  way that  the  
air  plug will vibrate in and out.  These  vibrations  give  the "bottle tone" one hears. In the 
musical instruments such as the  guitar and the violin the inner air volume of the sound box is the 
spring and the air plugs in the  sound holes are the vibrating masses. The resonant tone is often 
called the air tone. 
 
 

 
Figure   2.9.  A  simple  resonator  - hole-volume  resonator  (the  Helmholtz resonator) -  a bottle and its mechanical 
analogue. 
 
The resonance frequency is determined by (area A/volume V see appendix), i.e. large  sound 
holes and a small corpus volume give a  high  resonant frequency  while  small  holes  and a large 

 
 
spring 
 
 
mass 
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volume  give  a  low  resonant frequency (formulas see appendix).  The  shape  of the air volumes 
and sound holes are generally  so complex  that  an  accurate calculation of the air  resonance  
frequency  is difficult.  For  practical purposes it is simplest to measure the  resonant frequency.  
The  formulas suggests how changes of the  size  of volume and hole area alter the resonance 
frequency. 
 
 
THE STRING RESONATOR (FREQUENCIES - NODES - ANTINODES). 
Let  us  as the next example study the resonances of a  stretched  string.  The vibrations  may  
look like the upper part of Fig.  2.10.  We  have  seen  this earlier,  see section 2.1.  We have also 
seen that the string may vibrate as in the lower parts,  i.e. the string has not one resonance but 
several. The resonances  occur at different frequencies and the vibration  modes look  different 
for each resonance.  The vibration mode must now be included in our description of a resonance.  
For all resonances sketched there are no vibrations  at  the end fastenings.  In the first  resonance  
(topmost)  the string has its maximum of vibration in the middle of the string,  i.e. there is  an 
antinode in the middle.  In the second resonance (the second  topmost part) there are no 
vibrations in the middle,  i.e.  there is a node in the middle  of the string.  The maximum 
vibrations are one quarter string length from the ends, i.e. there are two antinodes at these 
positions. In the third resonance  (the  next  lower part) there are two  positions  of  no  motion 
(excluding the fastening points),  i.e.nodes and three positions of maximal  vibrations,  i.e.  
antinodes.  In  the fourth mode there are  three interior positions of no vibration and four 
positions of maximum vibrations. At resonance the string divides itself into "subparts" by a 
number of  nodes with antinodes in between. 

 
 
 
Figure  2.10. Resonances of a stretched string. 
 
We  have  thus made a simple summary of a string's way to vibrate at  resonance, i.e.  the  
maxima of vibrations,  ANTINODES,  and the minima  of  vibration, NODES,  for  the  four 
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lowest resonances.  Often the vibration modes  of  an object are described by giving the nodes 
(nodal lines).  Another way,  which may be more informative is to use the antinodes.  In Fig.  
2.10.  we see that the  first resonance has one antinode,  the second two,  the third three…. the 
17:th resonance 17 antinodes,  etc..  Note that the number of nodes also increases  as the 
resonance number increases.  The vibration modes  are  thus fully  determined  by  the  fastening 
and the  length  of  the  string.  The frequency  is determined by the string length (l),  the string 
mass  (weight)  and the string tension.  Relations between  resonance  frequencies, positions of 
nodes and antinodes are presented in Table 2.1. 
  

                          
 
 
   
Figure   2.11.  The vibrations of the second string resonance - the motion seen by the eye (top plot) and vibration 
shapes at consecutive instants (c.f., snapshots). 
 
 
 
Table 2.1.  The vibrating string - resonance frequencies,  positions of nodes and antinodes. 



Jansson: Acoustics for violin and guitar makers 2.16 
 

 
If the frequency of resonance no  1  is   f1  
then the frequency of resoance no      2       f2 = 2 x f1 
                                                   3       f3 = 3 x f1 
                                                                  .... 
                                                 17       f17 = 17 x f1                 etc 
i.e. the frequency of the n:th resonance equals n times the first one. 
If the length of the string is L then the nodes are at positions      
for resonance no  1  position    0                              L 
                   2                      0           L/2             L            
                   3                      0             L/3      2L/3      L 
                                     ......... 
                  17                 0   L/17  2L/17  ……........       L                        etc. 
The antinodes are halfway between the nodes i.e. 
for resonance no 1       position     L/2 
                 2                    L/4   3L/4 
                 3                   L/6    3L/6    5L/6 
                                    ........ 
                17             L/34, 3L/34, 5L/34, ........  …………33L/34      etc. 
 
 
 
The vibration shapes sketched in Fig.  2.9 are the extreme positions of  the string during 
vibration..  The  extreme  positions  of the second resonance looks like  the upmost frame in Fig.  
2.11. But the vibration shape is changing all the time. In the lower frames of Fig. 2.11, the real 
vibration shapes are sketched for consecutive instants (snapshots of string shapes). 
 
A  resonance  occurs at its own fixed frequency,  when the resonator is  driven (excited)  at just 
that very frequency.  At the pluck of a guitar string or at  the hammer  blow  of the piano string,  
all the string resonances are  set  into vibration at once.  The different string resonances will 
behave  differently depending on their bandwidths for instance.  Note the difference in the 
starting of the vibrations,  plucking means pulling the string aside and then be left to vibrate 
freely  (decay).  In  the  piano  the string is given a short  push  and  is thereafter left to vibrate 
(decay) freely. 
 
2.7 COMPLEX RESONATORS 
We have so far studied fairly simple resonators, the properties of which can be described by exact 
mathematical formulas. We shall now continue with more complex resonators for which no exact 
mathematical formulas can be derived.  
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Figure  2.12. Vibration modes for resonances of a bar with both ends free. 
 
THE BAR RESONATOR (FREQUENCIES,  NODES, ANTINODES, VIBRATION MODES AND TAPPING TESTS). 
Let  us  so turn our attention to the bar resonator and its  resonances.  We shall treat the free bar,  
i.e.  a bar not fastened at the ends or elsewhere.  
 
The bar has many resonances. The vibration modes are sketched in Fig. 2.12.  In the first 
resonance, the bar has two nodes,  not at the  ends  but 22.4 % of the bar length from its ends.  
The  vibrations  are maximum  at  the ends and in the middle (about equal size),  i.e.  these are 
the  positions  of antinodes.  For the second resonance there are three nodes at 13.2 %,  from the 
ends  and in the middle.  The antinodes are at the ends and between the nodes.  The following 
resonances have an increasing number of nodes, and the  antinodes are in between and at the 
ends.  Note that there are simple relations between the order number of the resonance and its 
number of nodes and  antinodes.  Resonant frequencies and positions of nodes are  given  in 
Table  2.2.  Note that the relations between resonant frequencies and nodal positions  are  not  as  
simple  as  for  the  string  resonator.  Resonant frequencies,  position of nodes and position of 
antinodes can,  however,  be described with accurate (but complicated) mathematical formulas. 
 
The lowest resonant frequency is determined by the stiffness,  by the  mass (weight) and by the 
length.  A little work  with  the formulas shows that the resonant frequency is proportional to the 
thickness of the bar (and thus to its mass too). 
 
What  practical use follows from this theoretical backing?  One good thing is that resonance 
frequencies can be obtained with tap tone testing.  To do so one  needs  to know where to expect 
nodes and antinodes.  For a  bar  it  is simple. The length of the bar determines the position of 
nodes. 
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Table 2.2. Resonant frequencies and node positions of a free bar. 
Resonance           Frequency                                  Nodes at 
no 1               f1                                           22.4%          77.6% 
   2                 f2=2.76 x f1 (≈5/3)2)            13.2%      50%         86.8% 
   3                 f3=5.40 x f1 (≈7/3)2          9.4%   35.6%    64.4%     90.6%  
   4                 f4=8.93 x f1 (≈9/3)2       7.3%  27.7%    50%    72.3%   92.7% 
The antinodes are at the ends and in the middle between the nodal lines 
 
Take for instance resonance no 1 for a 50 cm long bar.  Hold the bar lightly at 22.4% from one 
end,  i.e.  50 x (22.4 / 100) = 11.2 cm from the end.  The bar will not vibrate at this position for 
the first resonance and this is  a good position for holding.  Tap at the antinode halfway between 
the ends, and  the  optimum way of listening to resonance no 1 has  been  chosen.  For further 
instructions, see paragraph 2.8 Measurement of resonances in bars and plates. 
 
The bandwidth of a resonance determines how long  the tone can be heard. The  pitch  and the 
duration of the tap tone give measures of the  frequency and  the  bandwidth  of the resonance.  In 
principle  a  scratching  at  the antinode can also be used.  For a sufficiently sharp resonance,  a 
weak tone with  the pitch corresponding to that of the resonance is heard.  A  sharper resonance 
will give a better defined "scratch tone". 
 
2.8. MEASUREMENT OF RESONANCES IN BARS,  PLATES, AND SHELLS 
TAPPING TESTS FOR RESONANCES (EIGENTONES). 
The resonances of a bar (and a plate) can be sought and identified by applying the following 
rules: 
1. HOLD lightly at a NODE. One should always hold at a node! 
2. TAP at an ANTINODE. 
3.  To  suppress a disturbing resonance,  tap at the node of the  disturbing resonance. 
4.  The  author  has  found it convenient to hold the  bar  (or  the  plate) between the first finger 
and thumb of the left hand as lightly as possible.  The left arm is held over the head with the bar 
hanging  freely just  outside  the right ear.  The tapping is done with the  right  hand,  a finger  tip,  
a knuckle or a nail (the higher resonance frequency the harder "hammer head" should be used). 
The tapping point is just outside the ear and it  is  shifted  relative to the bar by moving the left 
arm  up  or  down.  The holding point is shifted by letting the bar slide a small amount between 
the first finger and thumb.  It is often suitable to lean slightly forwards to ensure that the bar is 
hanging freely (nothing is allowed to touch the bar but  the left hand first finger and thumb). 
 
The best way is,  however,  obtained with the so called Chladni method and a loudspeaker, c.f. 
Fig. 2.2. A loud tone of the loudspeaker sets the bar into vibration and small particles, such as 
coarse saw dust is sprinkled over the bar. The nodal lines are found in the following way: 
1. the loudspeaker is placed under an expected antinode 
2. the supports in the form of small pieces of foam plastic are placed under two expected nodal 
lines 
3. the saw dust is sprinkled over the bar 
4. the frequency of the loudspeaker tone is adjusted to a frequency at which the particles have the 
largest motion 
5. the positions are sought where the saw dust collects, i.e., the positions of nodal lines 
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6. the measurements are optimised by repositioning the supports at nodal lines and the 
loudspeaker under an antinode. 
 
The  frequency  of maximum vibration equals the resonance frequency and  the lines  where the 
saw dust collects are nodes (nodal lines).  The  positions where the saw dust starts moving are the 
antinodes.  A coarse measure of the vibration sensitivity peak level can be obtained by watching 
how much the volume control of the amplifier must be turned up to start moving the saw dust at 
antinodes (a low volume means a strong resonance). 
 
THE PLATE RESONATOR (FREQUENCIES AND NODAL LINES). 
A plate has two main directions in which it may bend and therefore resonances are found in two 
directions.  The nodal line patterns can for a free plate in principle be ordered as 

 
Figure   2.13.  Nodal  lines (broken lines) for a rectangular plate  with  free edges (frequencies for a Sitka Spruce 
plate 110 g, 362 x 210 x 3.7 mm). 
 
in Fig.  2.13.  In the first row the resonances with zero vertical nodal lines are placed (two 
resonances with two and three horizontal nodal lines are sketched - compare the bar Fig. 2.12).  
In the second row the resonance with one vertical nodal line is placed, etc.  In  the  first  line 
there are resonances with zero horizontal  nodal  lines placed,  in  the second line with one 
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horizontal nodal line,  in  the third  line  those  with two horizontal nodal  lines,  etc.  .   Higher  
resonances  have  nodal  lines  which  are combinations of the simplest ones.  The antinodes are 
centred  between the  nodes in the inner part and along the edges.  The resonance frequencies are 
determined by the thickness, length, width, and mass of the plate. 

 
Figure 2.14.  Vibration modes for a plate fastened along its edge compared to those  of  a string.  Nodal lines along 
the edges and  inside  (broken-dotted lines).  Lines  of  equal vibration are also plotted (full lines,  bent  and closed).  
 
In Fig.  2.13 three measured resonances  are marked together  with their nodal lines and 
frequencies.  A complication should be mentioned. When a plate is bent in one direction it will 
by itself bend in other ways at the same time. When the plate is  bent  down  at the short edges of 
Fig.  2.13 the longer edges  will  bend slightly upwards.  This means that the nodal line patterns 
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sketched in Fig. 2.13 and 2.14 look  somewhat  different  in the  real  world,  especially  the  high 
frequency ones. 
 
 THE INFLUENCE OF FASTENING AND THE SHAPE OF THE PLATES 
The  plates  are,  however,  often  fastened along the  edges,  and  such  a rectangular plate will 
give vibration modes as sketched in Fig.  2.14. The magnitude of the vibrations have been 
marked with  lines  of  equal vibration. Observe the close analogy with the string in two 
directions. 
 
 

 
 
 
Figure   2.15.  (left) Vibration  modes of a violin shaped rubber membrane - the  first seven modes with nodal lines 
and antinodes indicated with a plus or minus  sign , and  (right) air modes of the violin body, A1 being the first.. 
 
 
 
The  frequency  and not only the vibration modes are much dependant  on  the fastening  along  
the edges (or at the ends).  Say that the first  resonance frequency of a bar with free ends is 100 
Hz. If the ends are clamped the same first resonance frequency is still obtained,  but the nodal 
lines are  moved to  the ends.  If the ends are fastened with hinges the frequency is lowered to  44 
Hz.  In the violin and the guitar the plate fastening is  be  somewhere between clamped and 
hinged. 
 

A1≈460Hz
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The  shape  of the fastening also influences frequencies,  nodal  lines  and antinodes.  The  
influence of the nodal lines for a rubber membrane stretched over a set of ribs are shown in Fig.  
2.15.  The rubber membrane was set into vibration  by  a small vibrator and small cork fragments 
marked lines  of  no motion at the different resonance frequencies,  i.e.  nodal lines. It can  be 
seen  that  the  "waist" of the violin divides the membrane  in  two  partly independent  areas.  
The same kind of nodal patterns are found in the  upper and lower part, c.f., 73 Hz and 90 Hz, 
and 106 and 127 Hz, respectively. The resonances of the aircavity show, similar patterns, see fig. 
2.14 (right) . Note that resonance 1 (A1) is close to the main resonances  of a violin. 
 
 
ARCHING (SHELLS) 
A violin top is not a flat plate but a slightly arched plate. Effects of the arching can be tried in a 
simple way by means of a playing card, c.f. Fig. 2.16. The card is held arched between the thumb 
and pointer. If the distance between the two fingers is varied the card will bend in and out in the 
middle. If one with the second hand increases or decreases the arch height of the card one feels 
with the first hand that the fingers on the sides of the card move together. The arching couples 
motions perpendicular to the card surface to motions in the plane of the card, especially along the 
edges. 
 
An arched plate is in physics called a shell and not a plate. To test the influence of arching a 
series of simple experiments were made. A rectangular spruce plate, 3 mm thick, 215 mm wide 
and 290 mm long (fibres along the plate and annular rings perpendicular to the surface) was 
selected. First the plate was bent by means of a string-loop across the plate at each of the nodal 
lines marked in Fig 2.13 (160 Hz). A wedge was pushed between each string and the plate giving 
a 6 mm arch (H, in Fig 2.16) and the the resonant frequency increased 50 % (increased stiffness) 
compared to flat. By locking the motion of the edges with a light clamp at each nodal line the 
resonant frequency increased another 50 %. Secondly the plate was bent by two string-loops 
along the nodal lines marked in Fig 2.13 (100Hz) and two wedges. The resonant frequency 
increased 60 %. Experiments with locking the edges by clamps introduced a new complication. 
The static clamping force gave a large influence on the dynamical properties. The experiments 
show that the arching has a large influence. In the top and back plates of the violin the arching is 
larger than in the experimental plate. 
 
 

          
Figure 2.16. In an arched plate (arch height H) vibrations ∆y result also in vibrations  ∆x. 
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2.9. SUMMARY:RESONATORS 
In  this part four kinds of resonators have been described:  the hole-volume resonator (the 
Helmholtz resonator),  the stretched string,  the bar and the plate.  The resonant frequency of the 
hole-volume resonator is  determined by  the size of hole and volume - large hole and small 
volume give high resonant frequency.  The  resonant frequencies of the string are determined  by  
the length, the mass (the weight) and the tension of the string - a short string  with high tension 
and small mass results in high resonant frequencies.  The frequency of the second,  third,  etc. 
resonances are two, three etc. times the frequency  of the first resonance.  The resonant 
frequencies of the bar  and the  plate are determined by the length,  the width,  thickness and 
mass.  A short bar,  and a short and narrow plate give high resonant frequencies.  A thick  and 
light bar and plate will have high resonant  frequencies.  In general there are  no simple relations 
between the different resonant frequencies of  the bar and plate,  respectively.  The effects of 
different fastenings have been introduced.  Furthermore the vibration at resonance  have been 
described by nodal lines and antinodes.  Finally a simple way has been described on how to test 
resonant frequencies of bars and plates by tapping and listening. Furthermore a somewhat more 
advanced method by Chladni patterns, giving vibration patters as well as resonant frequencies. 
For the violin top and back the arching increases the stiffness of a plate in perpendicular to the 
arching. 
 
 
2.10 KEYWORDS: 
Resonator, resonance, resonant frequency, bandwidth, decay time, vibration   modes  (vibration  
patterns),   nodes,   antinodes,   hole-volume resonator,  string resonator,  bar resonator,  plate 
resonator,  free  ends, hinged ends and clamped ends. 
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2.11 APPENDIX 
The resonant frequency of the hole-volume resonator is  in principle /A V  where A is area of 
hole and V is volume of cavity. The length with end corrections effl  are considerably larger than the length l  for 

thin-walled musical instrument, and resonant frequency ( / 2 ) /( )effc A l Vπ= . 

 
Formulas  and  some  numerical  values on  the  relation  between  acoustics properties and 
mechanical properties of a resonator 
 
In  mathematical language the mobility (vibration sensitivity) for a resonance  
 
(vibration velocity/ vibration force) = 
                               2 2(2 / ) (1/ ( / ) ( / / )o o of SM B f f f f fπ= × + − =   
 
                               =(specific mobility) ×  (resonance properties)    (c.f. Fig. 2.5) 
 
In  the formulas S is the spring of the resonator,  M is its mass and B  its bandwidth,  0f   is  the  

resonance  frequency = (1/ 2 ) S
Mπ and  f   is  the  frequency  of evaluation. 

 
Examples: 
1a)  If  the  mass  is doubled or halved,  what  happens  to  the  resonance frequency? 
A  little  calculation  shows  that the resonance frequency  is  lowered  or increased 
approximately 6 semitone steps (from 500 to 350 or 500 to 700 Hz). 
 
1b)  If the stiffness is doubled or halved,  what happens to  the  resonance frequency? 
A little calculation shows that the the results are opposite to those in 1a,  i.e. the resonance  
frequency  is lowered or increased approximately 6  semitone steps (500 to 700 Hz or 500 to 350 
Hz). 
 
2a)  What  is  the time for 60 dB decay (the  reverberation  time)  for  the bandwidths 500, 25, 
12.5 and 6.25 Hz? 
With some calculations it can be shown to be 0.0002, 0.088, 0.176, and 0.352 seconds, 
respectively. 
 
2b)  How much higher is the resonance peak higher level than the specific vibration sensitivity at 
500 Hz for the three bandwidths? 
Again a little calculation shows the peak level is 0,  26,  32,  and 38 dB above the specific 
vibration sensitivity, respectively. 

 
 


