Classic Guitar Intonation

by Greg Byers
From his 1995 GAL Convention Workshop

NE OF THE FIRST THINGS I noticed when I
started playing the guitar as a teenager was
that it was frustratingly hard to tune. Ireally

wasn’t sure what was going on. It turns out to be a
rather intractable problem in a lot of ways.

When I first started building classical guitars in the
early ’80s John Gilbert told me about his method for
setting intonation. At about that time he published an
article on the subject in Soundboard.! 1read it, but didn’t
understand his thought process. Shortly thereafter I ran
across an article in the Journal of Guitar Acoustics by Bill
and Pat Bartolini.2 They describe a method which
involved shortening the fingerboard slightly, as did
Gilbert’s. I eventually thought I understood the
Bartolini article, but I felt they had the details wrong.

I started working on my own theory about ten years
ago. I've pondered it over the years, trying to develop a
theory that holds water and that could be both useful
and understandable. Fortunately, I've recently had some
invaluable help from my friend Cem Durudz, who is a
classical guitarist from Turkey, and also a PhD physics
student at Stanford. Without his help on the math I
could not have completed this project. It’sreally a
collaboration, although any errors are my responsibility.

There is quite a bit of math in what follows, and ’'m
not expecting you to understand all of it. It’s not a simple
problem. I’ll guide you through my thought process and
hopefully we can come out the other end with some
practical solutions.

From the very first development of fretted instruments,
luthiers have had to consider the questions of
temperament and intonation. The question, after all, is

“Where do you put the frets?” Vihuelas, lutes, and viols all
had movable gut frets on at least most of the fingerboard,
which could be tuned by the player. Bermudo in the
16th century recommended this, but he also apparently
complained that they were often tuned by the player
with disastrous results.>

He recommended, as did some others of the time,
tuning the frets in whole number ratios. Across the top
of Table 11 have given you the fret number (n) up to 12.
DMS means “diatonic major scale,” so here I've just
given you the letter notes for an E string. Bermudo
suggested tuning to Just intonation, which is indicated
in the third row. Here X, is the total scale length and
Xp is the distance from the nth fret to the saddle point.
For Just intonation these two quantities are in whole
number ratios, as are given here. So for the second note
of the DMS the distance to the bridge is 36 the total
scale length; the third note distance is %5, the fourth
note distance is ¥4, and so on, so that by the time you get
up to the octave you are at %2 the scale length.

This plan worked fine for one course of strings but
when you started putting chords together it began to
break down. The major reason was that the whole step
interval ratio was of more than one size (see Table 1,
“interval ratio”). For the first whole step you had an
interval ratio of 89, but for the second whole step you had
an interval ratio of %10. This created problems whenever
you tried to change keys or play chords across strings.

At the same time that Bermudo was recommending
this, another method was widely used and probably has
been around for virtually as long as fretted instruments
have been around, and that was to use a constant ratio

fret (n) 0 1 2 3 4 5 6 7 8 9 10 11 12
“DMS” (E string) E F# G* A B ct D¥ E
“Just” (Xn / Xo): n 80 45 7, b%) ¥ 84s Z)
N N AN NANA NN
interval ratio: 8% %10 %16 8% %10 8% 1516
“Rule of 18”: n 18 | (18)2 | (1718)3 (Ms)12
Xo = 650MM: 650 3274
“Equal” (Xq = Xo 2 "12): L lo2Wa | 2%2 | 2%2 2%
Xg = 650MM: 650 325

Table 1: Some historically important scale temperaments




for succeeding halfsteps. This was undoubtedly
discovered empirically and is often called the “Rule of
18.” What the luthier did was to make the distance from
each succeeding fret to the saddle point 1718 the
distance of the previous one (see Table 1, “Rule of 187).
Let’s assume we have a scale length of 650mMm. The zero
fret, or nut, is 650MM from the saddle point. The first
fret is 1718 of that distance to the saddle, the second is
17/18 of the first fret distance, or (17/18)2 times the total
scale length, and so on up to the 12th fret, where the
distance to the saddle would be (1718)12 x 650. If you
multiply this out you get 327.4mM. That’s not exactly
half of 650, but it is fairly close. In fact, it is not bad as
an approximation because it provides a built-in method
for producing saddle setback. It works better than you
might imagine.

Now let’s look at the method we currently use for
setting fret placement, which is sometimes called “equal
temperament.” It is very similar to the Rule of 18 in that
the octave is divided into 12 regularly-spaced intervals.
The difference is that the 12th fret is arranged to be at
the halfway point. The equation which spells this out is:

(1) Xn = Xo2"2,

where X, is the distance from the nth fret to the saddle
and X, is the distance from the “zero fret,” or nut, to the
saddle, i.e., Xo is the total string length. We generally
don’t distinguish between the distance between nut and
saddle (Xo), and total string length (Lo in what follows),
which, depending on saddle height, is marginally longer.
Although the distinction is necessary for the math, there
is no practical difference (see Fig. 2).

This equation reads “x sub n equals x sub zero times
two to the minus n over twelfth power.” You might be
familiar with the well-known relation between frequency
(f) and the notes (n) of a chromatic scale:

2) fn=f, 22,

The frequency of the nth note of a chromatic scale is
equal to the frequency of the first note of the scale times
2 to the V12 power. Frequency is inversely proportional
to string length and from that you can derive Equation 1.4
Observe that the distance between the nut and the first
fret under the Rule of 18 is the scale length divided by
18. With equal temperament it is the scale length
divided by approximately 17.817.

If you set your frets according to this equation and
pay close attention, you will notice the notes get
progressively sharp as you go up the scale unless you
make some sort of compensation at the saddle. This is
why we all move our saddles back away from the nut to
some degree. The question then becomes “How far back
should we set it?”. The answer we often apply is to
compare the harmonic at the twelfth fret with the
fretted note, and set the saddle so they are in tune. But
that’s only an approximation. If you play unisons and
octaves up and down the fingerboard, you will find that
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they don’t all play in tune even if you get those twelfth-
fret harmonics exactly the same as the fretted twelfth-
fret notes.

There are a number of reasons for this. One of them,
sadly, is that unless strings are uniform in diameter and
density throughout their length they will not play in tune.
String manufacturers do the best they can, but there will
be some variation. This is not something we can
compensate for with setup.

Beyond string quality, the major reasons for poor
intonation have to do with the fundamental properties
of strings. There are two properties of particular
importance to us, namely elasticity and inharmonicity.
Since both elasticity (stretch) and inharmonicity
(stiffness) have tangible effects, any theory about
intonation should take both these factors into account.

As we all know, to stretch a string is to increase its
pitch. When we fret a note on a guitar we are stretching
the string to meet the fret, and that slightly increases the
pitch. One of the principal problems that we have to
overcome is the fact that open strings do not have this
extra stretch, while fretted strings do.

Inharmonicity has to do with the stiffness of the string.
All strings have stiffness. The sound of a plucked note
consists of the fundamental and an overtone series. An
ideal string has a harmonic overtone series, in which
each succeeding mode of vibration is a whole number
multiple of the fundamental. Fig. 1 depicts the standing
waves for each of the first few modes of vibration. It
shows that for each succeeding mode the number of
nodal points increases by one, and that they are equally
spaced along the length of the string. The first mode is
the entire string length. For the second there is a node
in the very center of the string. At the same time, the
string vibrates in thirds, in quarters, and so on.

Ideally, this would give a harmonic series of
overtones, but because the string has stiffness, the
higher you go in overtone number, the more twists and
turns the string must undergo, and the more the
stiffness tries to resist that vibration. In the end, that
stiffness slightly raises the pitch of succeedingly higher
overtones. When we hear a plucked string, our ear/
brain mysteriously performs a complicated integration of
all these overtones to decide what the perceived pitch

Figure 1: Modes of a vibrating string



should be. Consequently, the note we hear is slightly
sharper than the actual fundamental of that note. And
as we shorten string length by fretting higher up the
fingerboard, both the fundamental and the perceived
pitch will be increasingly sharper than we might expect.

I'will now present a mathematical model for how this
all fits together. What follows is difficult, and probably
will not be fully understood even by the mathematically
literate on the first few tries. Be not dismayed.
Mathematics is just a very careful way of thinking and
communicating about a problem. It exposes all your
assumptions and understanding in a particularly naked
and honest way. It doesn’t shift like the quicksand of
nuance our words often carry. Very often what we seek
from a mathematical theory, in spite of apparent
precision, is not an ironclad numerical result, but rather
a deeper qualitative understanding that can point to a
better practical solution. Such is the case in what
follows, where we will explore the implications of string
stretch and stiffness for intonation, which will in turn
motivate a way to experimentally determine optimum
nut and saddle placement.

If you follow a particular method for setting
intonation and are happy with the results, skip this
article. If upon playing unisons and octaves up and
down your fingerboard you find some of them wanting,
and you want to know why, try to follow the theory
spelled out here, or at least the conclusions drawn. If
you want to improve your intonation, check out the
experimental results at the end of this article.

The Model — Stretch First

This model treats stiffness and stretch separately.
Let’s start with stretch. The basic parameters of this
part of the model are diagramed in Fig. 2. This follows
the Bartolinis’ model rather closely, the main differences
being notational. It represents an idealized model of
what goes on when you fret a note on a guitar. X, is the

distance between nut and saddle and is the nominal
scale length. The distance from the nth fret to the
saddle is Xy, as determined by Equation 1, where n = (1,
2,3,...). Lois the actual length of the open string. Fret
positions 1 and 2 are shown, and of course the series
could continue as far as you like. Also shown are n,
which represents the fret we are choosing to examine,
and n-1, which would be the fret immediately behind
that fret.

Ly is the length of the fretted string, which has to go
through some deformation and stretching. In the model
this is done in an idealized form (see enlarged portion of
Fig. 2). We actually fret a note with a finger, not some
sort of knife edge, but in order to make the mathematics
tractable this model will suffice. We can vary m, the
distance from the nth fret that the low point sits; we can
change j, the amount you can depress the string. This is
just a simple way of introducing the same range of
variability produced by a finger.

The fretted string, or Ly, can be broken up into four
straight segments. They would be from the nut to the
fret behind the fingertip (n1); from the fret to the
fingertip (n2); from the fingertip to the fret in front of
the fingertip (n3); and from the fret to the saddle (n4).
In what follows, £n4, which is the vibrating segment of
the fretted string, is going to be referred to as just fn.
The sum of these segments is Ly.

We are going to be specifically interested in a couple
of quantities which we’ll call Qn and R (Fig. 2). Qpis
defined as the change in string length as a result of
fretting (and stretching) it at the nth fret, divided by the
total string length, Lo:

_ Ln-Lo
Qn = o -

More generally, for any string length L, Q = AL/ L,
where AL reads “change in L.”
R s defined as the amount of frequency change

Definitions: (here the symbol = means “is defined as”)

Xo = scale length; Xn = distance from the nth fret to saddle, n = (1, 2, 3,...)

L (or Lo) = length of unfretted string
La = string length when fretted at nth fret
Ln =fn1, +fn2, +fn3, +fn4
fn = fna Lo
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Figure 2: Geometry of intonation model
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4

relative to the initial frequency that is induced by a given
relative change in string length through stretching:

R L AL/
= TAL/L"

R is a unitless quantity which is going to vary for each of
the six strings on your guitar. It will also differ
somewhat with different brands and tensions of strings.
Alittle later I will show you how to measure R. Ishould
say here that most of this, including the concept of R
and how to measure it, is due to the Bartolinis. What
follows now, however, departs from their work.

Let’s examine the mathematics of this geometric
model. I mentioned frequency is inversely proportional
to string length. More precisely,

1 T
® f-%+Z,

where T = string tension, s = cross-sectional area, and rho
(p) = density. This works equally well for monofilament
strings and for wound strings with a core of nylon floss and
wound metal coating. To simplify the notation, let

b(L)=_;-\/§S )

read “b of L.” This simply means b is a function of
string length. That is, as L is changed by stretching it, its
tension, density, and cross-sectional area are going to
change too, to some small degree. Now we can say

fo = —]L b(Lo) .

We are looking for the frequency at the nth fret.

Author Greg Byers demonstrates his compensation system during his talk
at the 1995 Guild convention.
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We want to allow the fret position to vary such that the
frequency fits our standard formula for the note of the
scale, that is, find

4) fn= Lp/n b(Ln) ,
such that
Q) fo=f, 272 .

This corrected fret position is denoted by £y, (read “I
prime sub n.”) We’re going to move the fret from its
usual position in such a way that we get the right pitch.
First of all in order to do this we have to evaluate b(Lp).
That is to say, b(L) varies depending on which fret
you’re actually stretching the string to. We use calculus
for this (Taylor’s theorem), but the details aren’t really
important. The results are what we need to pay
attention to. We get an equation that looks like this:

1 ob(L) N
65 fn= 7, (b(Lo) + oL |, (Ln-Lo)) .
The term

ob(L)

IO | 98

(read “partial derivative of b with respect to L evaluated at
Lo”) expresses how b changes with changes in string length
(at pitch) near L = Lo. It turns out that we can relate

ob(L)
oL L,

to R. This is useful because R, as I have mentioned, is a
quantity we can measure. Remember from Fig. 2 that R
is defined in terms of frequency change (Af) as it relates
to string length. Therefore, we need to find out how f
changes with b, i.e.,

of(b)

db

Then we can find R in terms of b instead of f. After a bit
more calculus (again Taylor’s theorem) we find that

. Lo _ob) -
R=% oL |L, 1,
and consequently

ob(L)
oL Lo

- bi‘;’ (1+R) .
Substituting into Equation 5 gives:
® fo= 3= (600) + X R)(1n-10))

Don’t worry if you’re not following the details at this
point. Suffice it to say that if you express Equation 2 in
terms of £, and b(L), and equate Equation 2 and
Equation 6, you can solve for{:

(N Co=%(1+Qn(1+R)).



The geometry is such that Equation 7 can be expressed
with virtually the same precision in terms of X (fret
placement):

(t)) Xln = Xpn(1+Qn(1+R)),

where Xp = X022,

_ In-Lo
Qn LO ’
Af/ f
R = AL

Once we decide on a scale length (X,) we can easily
evaluate X,. We know what Qj, is by evaluating these
various string lengths according to our geometric model,
and we can determine R experimentally.

Experimental Interlude: Measurement of R

I want to take a moment now to show you how that is
done. Intheir paper, the Bartolinis describe a device for
measuring R similar to the one shown in Pheto 1. Recall
that R relates pitch change to string stretch. This device
has a tuning machine (in this case two) mounted to a
Y4x20 threaded rod, regulated by a wing nut. A scale
dividing the circle into tenths behind the wing nut
allows you to measure string stretch to within about
L500". With this device you can measure a scale length,
tune a string to pitch, and then stretch the string with
the wingnut and measure the change in pitch that
results from a particular amount of stretch. It’s a rather
crude device really but it gets the job done. For each
string you can actually measure the value of R.

The Bartolinis did this for a number of brands of
strings. They concluded that for a G string, R is about
35 and all the other strings are pretty close to one
another at about 26. These are dimensionless values. I
have made the same measurements on a number of
strings and I have gotten values somewhat smaller than
theirs (Table 2). My method is slightly different, and I
don’t know which is more accurate. This is one area
where more work needs to be done.

=1 B o L
Photo 1: A device for measuring R. A tuning machine is mounted to a
Y4x20 threaded rod. A scale dividing the circle into tenths behind the
wing nut allows measurement of string stretch to within about 200",

string Ee A D G B E|

R 25 23 22 30 24 21

Table 2: Experimentally derived values of R.

Results are not as reproducible as one might hope, so
for each string you have to make repeated measurements.
For every set of strings you’re going to get a different set
of values, so not only do you have to measure each string
repeatedly, but different samples of the same string from
the same manufacturer will give slightly different values.
Of course, the strings must be prestretched for a while
before they will give consistent measurements.

I turned the wing nut until I had increased the pitch
by one semitone, as measured with a Seiko chromatic
autotuner. I measured how many turns that was, 1.3 or
whatever, which represented how much the string had
been increased in length. Then I turned it back down to
the original pitch and measured that. It’s difficult to get
areally precise measurement. These numbers I've given
you here are averaged for a combination of D’Addario
J46 and Augustine Regals with blue label basses, and a
few other things. I also measured Savarez Alliance, and
those numbers are smaller by about 10% than the
numbers I’m giving you here.

Back to the Model

Now that we have a value for R associated with each
string, we can, for each string, evaluate Equation 8 and
obtain a set of stretch-accomodated fret positions, {X'n},
for the whole scale. As noted previously, this requires,
in addition to our experimentally determined values of
R, a nominal scale length X, and an evaluation of Qp.
This is determined just by cranking the numbers on our
geometric model for a particular saddle height, fret
height, and so on.

Because the parameters differ, we get a different set
of fret positions for each string. That doesn’t do much
good if we want to set properly-placed frets for all strings
atonce. Somehow we’ve got to figure out a way of
setting the frets to work across all strings even though

Photo 2: The measuring device was clamped to the workbench, and a
section of movable fingerboard was used to provide frets at appropriate
intervals. This apparatus was used to obtain the data in Table 7.
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each set of {X'n} is dlfferent The way we do it is to fit
each of our sets of X'n * to an equation of the form:

9 Xn=a2"2+b.

To empbhasize its generality, we shall henceforth call
this our canonical equation for fret placement. Notice
this is identical to our Equation 1, with a equal to X,
and b equal to zero. The a, then, in this equation
represents scale length. If you make this fit using a
curve-fitting statistical package on your computer, you
will find that for each string the ﬁtted equation gives a
different value of a, which I call X", (read “X double
prime sub 0”). This, then, is a new scale length. The b
in Equation 9 I call AS, or saddle setback (Equation 10).
If you think about it I think you can see why. For each
fret position you have to add a little bit more, the same
amount more each time. That’s what b is, and that’s
what saddle setback is:

(10) X'n~X'"52"2+As
= X”n +As .

Once we do this we can also calculate a nut position.
Think about it this way. When we derive this set of fret
placements {X 'y}, we find in each instance we have to set
the fret slightly farther back toward the nut from its
initial position. The model does this to increase the
fretted string length to compensate for the increase in
pitch that results from stretching the string. It does this
for every fret except the zero fret (i.e., the nut) because in
this case the string is unstretched (unfretted). This results
in a relative shift in nut position, AN. Mathematically,
this is expressed as:

(11) AN=Xo- (X0 +AS) .

Since (X'o + AS), which comes from our canonical
approx1matnon to {X'n} (Equation 10), is larger than
Xo, AN is a negative number. I define it this way to
empbhasize the fact that, in practice, AN is subtracted
from the end of the fingerboard, shortens the distance
between the nut and the frets, and indeed, shortens the
total length of the string.

Now we have newly calculated fret positions, X 5,
that follow our canonical formula (Equation 10); we
have saddle setback, AS; and we have found a new nut
position, AN. We end up with a set of fret positions that,
as it turns out, are very close to the theoretlcal values
from our model for string stretch, X'n. Each string has a
different set of values but because X p is in canonical
form, we can scale each X'o up to, let’s say, 650mm, so
that there is a common nominal scale length for each

* Recall that the subscript n is defined for frets (n=1, 2, 3, ...) but not
for the nut position. Even if we allow n=0, Equation 8 wdl collapse to
X'0=Xo, correspondmg to the trivial fact that playmg the open string
doesn’t require changing the nut position to stay in tune. Thus, the
set {X'n} does not contain X'.
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string. This allows us to cut our fret slots in the normal
way for all strings and just make appropriate
adjustments at the nut and saddle.

This may sound like slight of hand but it’s quite
important to try to understand. Our model leaves Lo (or
Xo) fixed as we calculate fret positions to accommodate
string stretch. Even our fitted equation is consistent
with this fact, as we see if we rearrange Equation 11:

(12) Xo=X"0+AS +AN .

What we want, however, is to lift this.constraint and
scale this equation so that, instead, X", is constrained to
be equal to some chosen nominal scale length. This
permits us to cut the same fret slots for all strings.

The Model — Adding Stiffness

Now I’d like to briefly go through the stiffness part of
the model. Stiffness is easier to say than inharmonicity,
and because it suggests an intuitive aspect of the
concept, perhaps it is just as well to use this term. Recall
that in an ideal string you have a harmonic series of
overtones or partials, but in a real string each partial gets
successively sharper, the higher you go. Equation 13°is
the governing equation for this phenomenon:

2 252 2
(13) Vp:-z% %(14.% Iﬁc_',("_ pom” )ESK )

Here, vp (read nu sub p) is the actual pitch of the
partial in question. For example, the fundamental is
represented by p = 1. E is the modulus of elasticity,
which is a property of the material the strings are made
of, how much it stretches for a given tension. Two other
properties of the string are represented by s, the string’s
cross-sectional area, and kappa (x), which is a quantity
called the radius of gyration. This is a property of the
geometry of the string, and for an unwound string kappa
equals r/2, where r is the radius of the string.

It will help to simplify the notation a little. Let

Es k2

2.2
a=4+2LT and P-= =

2

Now for the fundamental we have:
1 28 2
T ta %—2) .

T
(14) vi= I (1+
The terms within parentheses in this equation account
for the stiffness of the string.

Audience: Is the string fixed at nut and saddle or does it
ride over nut and saddle?

I’'m not sure how that changes things but that’s a fair
question. For inharmonicity it is assumed to be fixed at
nut and saddle. For the calculation of R the string rides
over the nut and saddle. I didn’t investigate the case
where it is fixed but I assume the difference would be
subtle.

So what do we do with this? As I mentioned, vi is
the frequency of the first partial, and in the case where
we let L be the total string length, it serves as a good



approximation to the perceived pitch of the open string. So we can
look at the frequency of the open string and compare that to the
frequency of the fretted string. We are going to keep it simple and
just look at the frequency of the fundamental and use that as an
approximation for the perceived pitch even though that flies in the
face of what I said earlier. Just looking at stiffness, not stretch, we see
that what really changes here is L. So, again, what we want to do is
write an equation for the frequency of the fretted note, allowing for
adjustments (Afy) in the placement of the frets to keep the fretted
notes on pitch:

1
as) fn= T (1+

+a v%—) where 5 = 0+Al, .

Then we solve for{p, keeping in mind that?, and L, are defined
as in our original geometric model. I’m not going to go into detail
like I did with stretch, but if you work through the math you
eventually end up with:

2 2
16) fo=tn 1+ 2- BB @ 8- Lya-9) .
n Lo

Now we can combine both parts of the model. It turns out they
combine multiplicatively, indicating they are not completely
independent in their effects:

2
2B 2B+ E;E (o -8)

(17) T =ty (1+Qn (1+R)) (1+ - Pla-9) .

or: fp=0x “stretch” X “stiffness”

It looks complicated. Indeed, it was even more complicated before
we dropped the higher-order terms. But take heart: all of these
things can be evaluated. DuPont will give you a number for the
modulus of elasticity of the nylon used, and you can measure directly
the density, the cross-sectional area, the tension, the strmg length,
and the radius of gyration. So we can actually calculate 0'n.

There are a number of things we can learn from this model. In
Tables 3 and 4 I have given some computer-generated results for just
the stretch portion of the model. We have calculated {X'4} for each
string, using appropriate values of h, R, M, and j. We have then fitted
these theoretically-derived points to our canonical equation
(Equation 9) and from that we’ve been able to calculate what the
saddle and nut positions should be.

In Table 3 I've set j=0.3MM. I'm assuming my frets are about a
millimeter high, so with j=0.3 that triangular string deformation in
Figure 2 goes about a third of the way down to the fingerboard. I've
also assumed that j decreases as you go up the fingerboard. That is,
when you press behind the first fret, your finger goes farther toward
the fingerboard than it would at the twelfth fret. I've modeled this as
j=0.3 (Xa/x:). Thus, for the first fret j=0.3, and for the twelfth fret
equals roughly half that amount. In Table 4 I've set j=0.5, assuming
that you're pressing your finger a little more solidly into the string.
I've done this to see how sensitive the model is to the value of j.
Frankly, this is one of the problems we have, that different players
have different touch. We need to find out what kind of difference
that’s going to make.

Let’s take a look at the numbers in Tables 3 and 4. Saddle setback
is in the neighborhood of 0.5MM to a little over 1.0MM. In Table 3,
where j equals 0.3, the nut is set forward up to 0.25MM. In Table 4, as
you increase the amount you press down on the string, the nut can
move forward as much as 0.5MM. So we see that nut placement 18

sensitive to how hard you press the strings. Imagine you’re fretting at

the first fret. The more you press, the more
you’te going to stretch that string, and the
sharper you are going to be relative to the
open string.

For now this is all I want to comment on
except to point out the column on the right
labeled 2 (Chi squared.) Thisisa measure
of how well the numbers fit. The closer x2
is to zero, the better the fit. In our case, a
value of around 0.2 would constitute a poor
fit. Remember, we are trying to fit our data
points to our equation in canonical form,
which allows us to use standard fret
placement, and allows us to calculate a
saddle setback and a nut “setforth.” If it’s
not a good fit it doesn’t do us any good, but
these values indicate it’s avery good fit.
Calculate the value of X, + AS for any fret
(n) you chose and compare itto the
theoretical value for X'n. You will see that
they are really close, much closer than you
could measurably differentiate.

Now let’s look at some results from our
attempt to model inharmonicity (stiffness).
As I say, this is work in progress, but we can
still learn from it. In the case of stiffness
only (Table 5), we get considerable saddle
setback for the unwound strings, and quite
a considerable saddle setback for the G
string — almost 4MM. The nut placement,
however, remains unaffected. By the way,
these numbers are given in hundredths of a
millimeter, but actually I find I can’t effect
a controlled change of less than roughly
0.1MM when I’m setting up a guitar.
Further, it’s quite unlikely that you could
hear a difference of much less than 0.1MM.
For these reasons the second digit past the
decimal point in these tables is fairly
meaningless from a practical standpoint.
You can feel free to round up.

Now notice the wound strings. The
numbers for saddle change are rather low,
indicating these strings are not as stiff.
This is not surprising. One of the main
reasons bass strings are wound is to reduce
their inharmonicity. In addition, the
diameters would have to be very large if
they weren’t wound. So you increase the
mass of the string (that’s our rho, or
density) by wrapping them with windings.
In addition, you can see that, relative to
stretch, stiffness seems to have more of an
effect on saddle setback. Althoughwe
shouldn’t put too much stock in
comparisons between Table 4 and Table 5
because they depend on the parameter
values chosen, we see that the wound
strings are about equally affected by
stiffness and stretch, but on the unwound
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string X0 AS AN x? string X" AS AN x2
E; 649.60 0.54 -0.14 0.002 E, 649.98 0.41 -0.39 0.01
B 649.42 0.73 -0.15 0.002 B 649.85 0.59 -0.44 0.02
G 649.13 1.07 -0.20 0.003 G 649.66 0.89 -0.55 0.02
D 649.22 0.92 -0.14 0.002 D 649.62 0.79 -0.41 0.01
A 649.05 1.10 -0.15 0.002 A 649.46 0.97 -0.43 0.01
E¢ 648.91 1.36 -0.27 0.002 Es 649.24 1.21 -0.45 0.02

Table 3: Theoretical results fitted to equation in canonical form.
X, = 650MM. Stretch only. j = 0.3 Xn/X,.

Table 4: As in Table 3 but with j = 0.5 Xn/X .

string X" AS AN x2 string X"y AS AN x2
E, 648.36 1.64 0 9.25x10°8 E: 648.33 2.06 -0.39 0.01
B 647.29 271 0 1.36x10°77 B 647.14 3.30 -0.44 0.02
G 646.01 3.99 0 5.73x10°77 G 645.65 4.89 -0.54 0.03
D 649.02 0.98 0 5.56x10°7 D 648.64 1.77 -0.41 0.01
A 649.17 0.83 0 6.90x10°70 A 648.62 1.80 -0.42 0.01
E¢ 649.30 0.70 0 8.38x1077 Es 648.54 1.91 -0.45 0.02

Table 5: Theoretical results fitted to equation in canonical form.
Xy = 650MM. Stiffness only.

Table 6: Theoretical results for stiffness and stretch.
Xy = 650MM.  j = 0.5 Xn/X,.

strings stiffness really takes over in determining saddle
setback. Nut setforth, however, is determined only by
the stretch. Again, 2 values in Table 5 are extremely
small for the stiffness part of the model. In fact they
signify a virtually perfect fit.

What happens when you combine the two halves
together is depicted in Table 6. I set j=0.5, decreasing in
value toward the high frets, and got numbers that look
like this: saddle setback is almost S5MM (this is the G
string, which is the worst offender), nut setforth is a
little over 0.5MM. All right, so that’s what the model tells
you to do with a few values that I've plugged in. The
take-home message is not in the numbers but in the
relationships: saddle setback is mostly, but not entirely,
neccessitated by stiffness (inharmonicity), and nut
setforth results entirely from stretch (elasticity); and on
both accounts the G string is the worst offender.

Experimentation and Results

It wasn’t until I had done most of the modeling that I
realized there’s a simple way to pretty much duplicate
my efforts with real strings using the same device I used
for measuring R (Photo 2). I made myself a little
section of movable fingerboard to slip under the strings.
In the interests of economy the intervals between these
frets are such that each piece of fretwire can serve as two
different frets (well, almost). Depending on where it is
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placed along the string length, the highest pair of frets
has the same interval as the 16th and 17th frets would on
a 650mM scale, the next pair has the same interval as the
11th and 12th frets, the next has the same interval as the
6th and 7th frets, and the final pair has the same interval
as the second and third frets. This last one can also serve
as a first fret. With appropriate shims under the saddle,
you can set saddle height, or h, to any value you want.
To obtain the data in Table 7, I first clamped the
device to my workbench. Then I'set h to the value I
would expect to have for a particular string, given the
way I normally set up a guitar. From the top of the
twelfth fret to the bottom of the G string is normally
about 3.5MM, so if I set h at the saddle to 7Mm I’'m going
to simulate that. In practice, I set h by just the same
procedure as on a real guitar, after first placing the
appropriate fret of my movable fingerboard at the 12th
fret position. Now you are ready to actually measure
where your frets ought to be placed (X'n), provided you
have accurately set the distance between nut and saddle
to your desired scale length. Tune the string to pitch,
depress the string at roughly the 12th fret position, and
pluck the fretted note repeatedly as you move the
fingerboard back and forth until it is exactly on pitch.
Use the best electronic tuner you can find to determine
the right pitch for whichever note you’re looking at.
With my little fingerboard gizmo I can get experimental



values for the 1st, 3rd, 7th, 12th, and 17th frets. You
could easily use an entire fingerboard cut well short at
the nut end to obtain data for all the frets.

Once you’ve established where the fret position s,
you have to measure it very accurately. I used two

500mm steel rules and a hand lens to measure scale length.

You can use either nut or saddle as a point of reference,
but the measurements must give exactly the same results
from either end. It sounds simple but in reality it is
painstaking work. You have to do endless repetitions
before you get the feeling that by taking averages you may
come close to getting a picture of what’s really going on.

I went through this procedure with a set of D’Addario
strings. When I switched the string end for end, I got
different values (laughter). This was true with both plain
and wound strings. I was surprised, because I've generally
felt that D’Addario J46s have been pretty true. Ithen
tried a set of Augustine Regals with blue label basses.
When I switched the strings around they didn’t vary as
much. The data in Table 7 are from Augustine Regals.

Remember, with the experimental work I don’t have
the 19 or 20 data points that we used to calculate the
theoretical results. In this case all I've got are average
values for frets 1, 3, 7, 12, and 17. That makes five data
points. If we had more we could probably fit our equation
more precisely, but even with just those five we can indeed
fit them to our canonical equation, get a value for X",
and then establish what our saddle setback and nut
setforth should be. If you look at the y2values you’ll see
they’re not quite as tight as they were with the theoretical
results. This is to be expected because experiments are
often messy. All kinds of problems crop up. Just
reading the ruler is a major source of error. Even so, it
turns out that the x 2 values are still pretty good.

Consult Tables 6 and 7 to compare these experimental
results with our model for stretch plus stiffness.
Remember, when we make the measurements with real
strings we are combining both these things. Look at the
AS and AN columns in both tables. The numbers are
not the same but they are of similar magnitude. Both
the model and the experimental apparatus can be
improved. For instance, the movable fretboard could be
mounted on a threaded rod so its position could be more
carefully measured. But this similarity of magnitude, I
believe, helps validate the principles of the

shows only the G string. Column A shows fret placement,
calculated according to Equation 1. Column B is X'5.
These are the numbers that I got using my little gizmo
and making the measurements. Column C, X"+AS, is
the value that I get that’s analogous to these, but for the
fitted equation. How good a fit is it? We can see by
subtracting column C from B. For the 1st fret we are
about 0.1MM off; for the 3rd fret, 0.03mMM. For the 7th
fret we’re 0.4mM off, which is more than I’d like to see.
For the 12th fret we’re off about 0.25MM, again more
than I would like to see; and for the 17th, only 0.02mM.
An interesting thing is that this doesn’t vary in a
regular way. In the first two cases my experimentally
measured fret positions are farther back than the fitted
curve gave them. In the case of the 7th fret, it was farther
forward, then back again and forward. I’m hopeful that
experimental error is the cause of these fluctuations.
But still, let’s compare this to the fit between our
experimentally determined fret placements and the
standard way of doing business, that is, with no nut
adjustment at all. That is, let’s compare the congruence
between column B and C with the congruence between
columns B and A. If you compare the experimentally
determined fret positions (column B), with calculated
positions using the basic formula (column A), you get
values (B - A), which, not surprisingly, are positive and
fairly high. This reflects the fact that we have to move
the saddle back to get anything like a decent fit. The

string X"y AS AN x?
E, 649.02 1.28 -0.30 0.11
B 648.59 2.14 -0.73 0.08
G 647.83 3.14 -0.97 0.26
D 649.06 1.47 -0.53 0.04
A 648.72 1.73 -0.45 0.01
Es 647.54 291 -0.45 0.06

Table 7: Experimental results fitted to equation in standard form.
Augustine Regal Blue Label strings. X, = 650MM.

model. There is nothing theoretical about
the experimental results, and they are the A B C
ones to be applied toward a practical solution. ) ,

I think you will find that the way that 'm no| X Xn X'n+aS) | B-C  B-A  B{(A23)
going to recommend setting up nut and 1 | 61352 | 614.73 614.61 1012 | +121 -112
saddle positions will help you accommodate " ] ’ ) ’ )
pretty well whichever strings you use. You 3 | sass | sa703 479 003 L35 .
might have a problem, however, if the player ' ) i i ’ )
experiments with different kinds of strings, 7 | sz | w510 43551 - 041 +1.28 105
particularly if they use Savarez Alliance and
then switch back to something else. That is 2 | 3500 | 32733 32706 027 | 4233 0.00
a fairly big change, and you might have
some perceptible intonation problems. 17 | 24347 | 2578 245.80 - 002 +231 S 0.0

Table 8 shows the last numbers I'm going

to throw at you, so take a deep breath! This

Table 8: Experimental results compared to “null hypothesis.” G string only. Xy = 650MM.
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typical way of determining saddle setback is to play the
12th fret harmonic and set the saddle so the fretted
octave matches that. The harmonic is a convenient
substitute for an electronic tuner. From this
perspective, then, the typical saddle setback one would
calculate with the nut remaining in the standard
position is the 12th fret value of (B - A). When we use
that value and then compare to column B, (B - (A +
2.33)), you can see the fit is still not nearly as good as
with our fitted equation. Here the fit is very good for
the upper frets but very bad (about a millimeter off) for
the lower frets. Clearly, our fitted equation, which
accommodates moving the nut forward as well as moving
the saddle back, is a much better fit to our data. Even if,
rather than taking the 12th fret value for saddle setback,
you took an average of all 5 frets for which we have data
(giving B - (A + 1.70) for the last column heading of
Table 8), you will find the fit is no better. Column Cis
by definition a mathematically optimum fit to our
experimentally derived data. That’s really the point of
this whole talk, that you can get a much better fit to
ideal fret placement by moving the nut and the saddle
both, rather than just the saddle.

So how do we go about utilizing these data? First, set
your frets according to the standard equation for, let’s
say, a 650 scale length. The values we generated for
both saddle and nut change are not, however, based ona
650 scale length, but rather on the value of X" o, Which
varies from string to string. For each string it is slightly

Figure 3: Recommended nut and bridge compensation from Table 7
shown diagramatically and exaggerated for clarity.
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less than 650 (Table 7), so for each you will need to scale
up the magnitude of AS and AN accordingly. This is
really little more than a formality since you will find they
change negligibly. For instance, for the worst case G
string,

ASgs0 = 3.14 x 65044783 = 3.15 .

When you set your saddle position you cannot
distinguish between 3.14 and 3.15MM. So the values
presented in Table 7 are my recommendation for
Augustine Regals. Further, I believe these data are
fairly representative of a broad spectrum of strings and
probably are good average values. I haven’t done the
tests to truly demonstrate this assertion, so you can
either try this out or test your own strings and report
back to the rest of us.

Jim Loewenherz: For the high E string you have X'0equals
649.02mM. Is that the new, actual string length?

No. I'maybe didn’t explam this well enough; but this
fitted equation, which has X", and also includes AS, and
from which we can calculate AN, all of these numbers
are for a nominal scale length of 649.02 in the case of
that E string. In order to use our standard fret
placement we need to scale everything back up from our
nominal scale length of 649.02 to 650. But when we do
that, because it’s so close to 650, from a practical point
of view AS and AN are still the same. They don’t change
enough to worry about.

Jim Loewenherz: So on this high E string the actual length
of the string from the compensated nut to the compensated
saddle would be...?

The actual string length is given by Equation 12 and
comes to 650MM. After we scale up to the nominal scale
length of 650MM, the string length becomes 650 plus
1.28 (i.e., AS), or lets just say 1.3, plus -0.3 (i.e., AN). So
the total length from nut to saddle would be 650.9MM.

Fig. 3 illustrates how I recommend you shape your
nut and saddle to fit these numbers. Roughly speaking,
what I do is cut the fingerboard short enough at the nut
end so that the most offensive string, which is the G
string, is accommodated by setting the nut right up to
the end of the shortened fingerboard. In other words,
shorten the board by AN, or about 1.0MM. Then for the
other strings you can just put a facet on the front face of
the nut to move the break point farther back. Measure
out these points with a hand lens. Again, let me
empbhasize that if you can get them to within a tenth of a
millimeter of the intended values you are doing well.

Once you have set the nut according to the data, you
could do the same with the saddle. However, I
recommend setting the saddle facets only approximately
and perhaps a little conservatively at first. Then you can
use the standard method for establishing saddle setback,
playing the fretted note at the 12th fret and comparing
that to the harmonic. It’s the simplest way to do it, and
it also lets you accommodate to some degree the
different kinds of strings you may use.



Tim McCoy: Greg, before you did the mathematical
analysis were you doing nut and saddle compensation?

Yes. Ithought that conceptually the Bartolinis reall
did something neat with their geometric model and witl
the concept of R. I also knew what John Gilbert was
doing. Iwanted to improve upon that, so I started by
doing seat-of-the-pants guesstimates of where I though
the nut and saddle ought to be. What I've done for a
number of years is to cut the fingerboard about 0.5Mm
short and then facet the nut so that the high E string
and the D string both go back almost to the original nut
position. The G string is left unfaceted and the others
are placed in intermediate positions. Then I set the
saddle setback according to the 12th-fret harmonic. It
has been an improved system. Players consistently tell
me that my guitars are more in tune than most guitars
are. ButI have never been fully satisfied with that
solution, and I've learned just in doing this analysis that
I really was not doing enough compensation at the nut.

Richard Bruné: Eugene Clark was working on a very
similar concept in the early ’60s, just empirically. Idon’t
think he was using mathematics.

Fritz Mueller: Greg, how does your system compare with
the one John Gilbert proposed?

Here is what John Gilbert recommended in his 1984
Soundboard article, and what he tells me he still does
today. For comparison I have converted his numbers to
metric and scaled them so that the fingerboard is slottec
according to a nominal length of 650mm. Note that all
strings are treated the same.

First, set your nut and saddle to give a Total String
Length (TSL) of 649.606MM, as if you used a
fingerboard cut to a Basic String Length (BSL) of
648.345mmM, with an additional saddle setback of
1.261mM. Hypothetically, the 12th fret would be
325.434mm from the saddle. But instead of using such a
fingerboard, cut your fret slots to a BSL of 650.000MM
from which you will then remove 0.827mMM from the nut
end. Notice that the 12th fret is still in the same
position as in the hypothetical case.

Gilbert’s AN, therefore, is -0.827MM. To compare his
AS to mine as I have defined it, it is necessary to use the
fingerboard with a BSL of 650MM as a frame of
reference. The distance from the 12th fret to the saddle
is 325.434MmMm, so AS is 0.434mmM. If you ask him what his
saddle setback is, he will say 0.050", which is equivalent
to 1.261mM (scaled appropriately), but as I have tried to
show, that figure is not analagous to my AS.

Kenny Hill: I've tried a system more like John Gilbert'’s. I
found that I could adjust to it just fine, but when I played
the Steve Reich piece I was out of tune with all the other
guitars. (Laughter) It didn’t sound real clean playing wit}
all these supposedly-out-of-tune guitars.

Richard McClish: The top of the guitar is a resonator in
various ways. It’s got Q. In a situation where we don’t
have the apparatus clamped to a granite slab, you'll find

that the string behaves as if it ends somewhere other than
where-it actually goes over the bridge. This is because of Q.
Ifyou have a guitar with a resonant frequency where you're
trying to do your octave thing, it would actually throw it off.
And a change in humidity may influence the resonant
frequencies by which the problem may just shift from fret to
fret, so... the fret next to it had the problem this afternoon
but you were testing an octave which was off the mark.

Yes that’s certainly a possibility, although usually if
it’s off, it’s off progressively worse as you go up or down
or whatever.

Richard McClish: Now the Q of a top is usually within a
5th of an octave, or a 6th of an octave, so if it changes by,
let’s say 5%, that would do it.

Audience: Have you done any calculations to find out what
changes in temperature and humidity are going to do to
relative fret positions? Might dimensional changes in the
soundboard and fretboard be a complicating factor?

That’s an order of magnitude more complicated than
what I've attempted.

Audience: It’s interesting that the setback on your bridge is
very similar to Gibson’s compensated steel string bridge.

As far as I'm aware, steel string makers don’t play
around with nut compensation, although they do a lot with
saddle compensation. The principles I've talked about
here are just as applicable to steel strings, and I hope
somebody will do the experiments. My strong suspicion is
that nut compensation in steel strings would be beneficial.

Steve Newberry: Do you plan to devote more of your time
and energy to pursuing this particular project?

At the moment my intention is to try to get this into
a form that’s publishable in American Lutherie and then
hopefully get on with my life (laughter). I'll et others
pursue it further.

Author’s Epilog: Iwould like to close by reporting that in
the year between delivering this talk and publishing the text
I have used this system on over a dozen guitars with
excellent results. I hope many of you will be brave enough
to try it and report back. Finally, how about a few lunatics
trying to test steel strings along these lines?
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